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SUMMARY

Measurements were taken in the wake of a two-dimensional cylinder
placed in a fully developed turbulent viscous layer inside a two-
dimensional channel. The experimental survey consisted mainly of
temporal mean velocity, static-pressure distributions, turbulence
velocity, and scale measurements. The survey pertains to cylinder
positions across the layer ranging from 0.072 to 0.5 of the channel
width for positions downstream of the wire from 5 to 1,000 wire diam-
eters. In the temporal-mean-velocity distribution, the mixing process
showed transverse similarities to the free-stream mixing of turbulent
and laminar wakes. The longitudinal rate of mixing of the wake at the
center of the channel is larger than that in a free stream with low
turbulence levels, and when the wake is near the wall the rate of mixing
is even greater. Some discussions are included concerning the process
of decay, when the wire is very near the wall and the wake spreads to
the wall. The Reynolds number of the flow in the channel based on the
half-width of the channel and the space mean velocity is 86,000, and
that of the cylinder based on its diameter and the space mean velocity
is 2,240.

INTRODUCTION

The decay of unrestricted shear flows originating from velocity dis-
continuities procduced by Jets, wakes, and cavities has been of consider-
able interest in the past years. Most of the work performed on this
subject, whether analytical, semiempirical, or experimental, deals with
the study of shear flows generated in free streams with low turbulence
levels. The analytical and semiempirical approaches to the solution of
laminar or turbulent jets and wakes are all based on the view that there
is a region downstream of the disturbance or nozzle mouth where the
mean flow assumes a lateral universal distribution. Experimental in-
vestigations rightfully do justify this assumption. Furthermore, the
universal character of the mean flow in the lateral direction has been
experimentally shown to be unique whether it pertains to the jet or the
wake in two or three dimensions. In other words, the dimensionless



velocity profile in the wake of a cylinder or a jet in two or three
dimensions at large distances froum the origin is independent of the
shape of the body that originally generated this vorticity field.

This fact is illustrated in this paper with fair certainty. All that has
been said in this introductory discussion pertains to the findings of pre-
vious investigators such as Schlichting §refs. 1 and 2), Tollmien (refs.
3 and 4), Reichardt (ref. 5), Forthmann (ref. 6), and recently Corrsin
(ref. 7) and Townsend (ref. 8), and others. The investigation presented
in this paper is primarily concerned with the effects of upstream tur-
bulence level and velocity gradients on the decay of wakes restricted in
a channel flow. The upstream conditions ahead of the cylindrical wire
producing the wake were chosen t0 be those of a fully developed turbulent
flow in a channel. The conditions of the upstream flow are thus well
established, because of the work of Reichardt (refs. 9 and 10) and

Laufer (ref. 11). The cylindrical wire was then placed at various loca-
tions in the fully developed turbulent shear layer and its process of
decay measured until the flow assumed its original fully developed char-~
acter. This paper contains an analysis based on experimental observations
of the mean-velocity decay, static-pressure decay, and turbulence decay
behind the cylinder placed in the viscous layer at various distances

from the channel walls.

For turbulent wakes and jets any analytical investigation available
today is based on a so-called "semiempirical analysis"” which makes use
of Prandtl's mixing-length hypothesis, Boussinesq's constant-shear-
coefficient hypothesis, or Taylor's constant transport of vorticity.
Naturally these assumptions become very useful in handling mathematically
the additional turbulent terms that appear when turbulent motion is con-
sidered. All of these assumptions are in fair agreement with the experi-
mental measurements taken across the wake or jet. The work pertaining
to this paper is compared with the analysis for wakes in free-stream
turbulent flow.

This investigation was carried out at Syracuse University under the
sponsorship and with the financial assistance of the National Advisory
Committee for Aeronautics.

SYMBOLS
b value of vy where velocity deficiency is half that of its maximum
cp drag coefficient of wire computed from momentum change
D diameter of tripping wire, 0.049 in.
d channel width measured locally; dg, = 3.856 in.

F(n) power spectrum of turbulence

L decay length until AUT = 0.03 Ug
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x-component of integral scale

time constant of hot wire

turbulence frequency

local static pressure

turbulent static-pressure fluctuation

static-pressure drop with reference to wall static pressure
dynamic pressure corresponding to undisturbed velocity
turbulent dynamic-pressure fluctuation

x-component of correlation function

x-component of temporal mean velocity

space mean velocity

maximum velocity in undisturbed shear flow

undisturbed velocity shead of and at center of disturbance
total veloclty as measured -JEE—I_VE, very nearly equal to U

velocity deficiency in wake, nearly equal to uj, or deficiency
in U

free-stream velocity

shearing velocity, <J157p

instantaneous turbulent velocity fluctuations in x- and y-
directions

velocity perturbation in x-direction

root mean square of u!'

y~component of temporal mean velocity
velocity perturbation in y-direction
Cartesian coordinate along length of channel
Cartesian coordinate normal to channel walls

coordinate from center of wake
y-location of axis of tripping wire

kinematic viscosity of air



g dimensionless velocity deficiency

p density of air

a ratio of compensated to uncompensated signal from hot wire
T shear stress at wall

Superscript:

— time average
ANALYTTICAIL CONSIDERATIONS

The problem under consideration is the turbulent mixing in the wake
of an infinite cylinder placed in a two-dimensional fully developed chan-
n=1 turbulent shear layer. The presence of the pressure and velocity
gradients together with the comparatively high levels of turbulence makes
the exact solution of the problem untractable because of the complicated
nature of the flow phenomenon., Attempts are made herein to explain the
results obtained through semiempirical hypotheses.

Two-Dimensional Wake in a Laminar Free Stream
Because the decay length of the wake 1s much larger than its width,
many terms in the Navier-~Stokes equations become very small compared with

others. Far enough downstream of the cylinder the perturbations suggested
by Oseen are

U = Um + uy
and
V = Vl

When U,, the value of the velocity in the free stream, and u,, the ve-

locity deficiency in the wake considered negative, are substituted in the
Navier-Stokes equations, one obtains a linearized set of equations

T T e TV 5
6Vl 1 ap azvl
U X =" o5y tV 92 (1)

provided U, 1s a constant and far enough downstream terms like
ul(aul/ax) and ul(avl/ax) are small compared with the ones in

equation (1).
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Since the angle of the wake spreald 1o cmall; the measured values of

the longitudinal velocity represent Up = ﬁ/Uz + V2 ~ U and the measured
velocity deficlency AUp =~ uj. For simplicity in the presentation, uj

is used in the analysils, while the experimental results are shown as AUnq.

The continuity equation is

Bul avl
% t3y =0
The general scolution to this problem (ref. 12) is in the form
P h

P=- m&
o kX (3

U.l=5-;%+§-1;— %{-kx > (la)
9 . KX dx

"= 3yt J

where Kk = Uw/2v and the functlions ¢ and x satisfy:

VZQ = 0
and
(V¢ - k)X =0

The differential equation for ¥ in uy; solves in the form
q 1

X = E CpK,(kr)cos nd

n=0

where Cp 1is a constant, Kn 1s the modified Bessel function, r 1is the
radial distance from the center of the cylinder, and 6 is the angular
coordinate. For large values of r and small values of 6, which indi-

cate the flow far from the cylinder and inside the wake, one can show in
the limiting case that

B 1/2 -kr(l - cos 6) z :
ul = (EE?) e Cn

n=0




But then for large r and small ©

x 4vx

2

kr(1 - cos ) = 2 kxé’ = 2 x

and consequently far downstream the solution takes the form

o= o) o [ ] @

It should be noted at this point that in a channel flow with constant

pressure gradient equation (1a) and consequently VZ@ = O are not satis-
fied. The effect on the pressure drop in the channel is discussed later.
The solution of equation (2) is the same if one neglects p and v to
begin with and solves the parabolic equation

ouy y d2uy
® ox dy2

U

(3)

The arbitrary constant € must be found from the so-called initial condi-
tion and in this case at x = 0. If the coordinate system is translated

to the center of the wake, and when yy = O, ul = (Uy)pax ~ x'l/z, then
the dimensionless form of velocity deficiency given in equation (2) becomes

u‘l Um(yw)z
E = ﬁ—ul — = exp [— ———4:VX (4’)

Let yy = b, where & = 1/2; then equation (4) becomes

E=e = e 8 (5)

where a = 0.6932, ¢ = yy/b,, and by = 1.66 \Nx/fUs. It is surprising
to know that experimental data pertaining to laminar and turbulent wakes
agree very well with the dimensionless form of equation (5). It is even
more surprising to see in figure 27 that equation (5) does not limit itself

to wakes alone but describes very well the behavior of laminar or turbu-
lent Jjet flows.

This extreme similarity in the laminar and turbulent mixing is what
led Reichardt (ref. 13) to believe that there should be a universal law
for the free mixing of any type of velocity discontinulty set up in the
free stream. What is most fortunate for this investigation is that, de-
spite the difficulties introduced by the turbulent fully developed shear

$8T1-H
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layer and the pressure drop, figure 7 shows still a remarkable agreement
with equation (5) derived for laminar Tlow iu the froc ctream. The ex-
perimental results in figure 7 were extended purposely on both sides of
the wake in order to examine the effects of the asymuetry in the boundary
conditions. It should be noted here that for positions of the cylindrical
wire 0.20 < n/d < 0.50 investigated in this work the dimensionless ex-
perimental results correlate well, as shown in figure 7. A general
statement for the entire boundary layer should not yet be inferred. For
positions 0O < n/d < 0.20, where turbulent agitations and energy transports
become extremely large, the behavior of the wake is intuitively expected
to be different. Also in this region very near the channel wall, the
presence of the wall on one side of the wake will limit greatly the trans-
port of energy and momentum. The experimental results in figure 6 for

n/d = 0.0715 substantiate this fact. Another important point to remember
at this stage is that equation (5) does not explicitly determine the de-
pendence of u; on x and Yy, except for the laminar free-stream case
solved. Schlichting (ref. 14) tabulates the dependence of u; and Dby

on x Tfor various experimentally investigated free-mixing problems.
The dependence of u) and b, pertaining to this work is established
experimentally in figures 24 and 25.

Wakes in Pressure Gradients

Since Goertler (ref. 15) has shown that, with the assumption of a
constant shear coefficient in the wake, the turbulent wake in the free
stream reduces to the same problem as that of the laminar wake with the
exception that the kinematic viscosity v 1s replaced by a "virtual
kinematic viscosity" which includes the effects of the turbulent shear
stresses, the influence of the turbulence level on the dimensionless
solution (5) is neglected here. Since the diameter of the wire D is
approximately 0.02 d, it 1s assumed for the ranges of n/d investigated
that U 1is an average value of the undisturbed flow Jjust outside the wake.
Then modifying equation (3) by including the constant pressure gradient
yields

dp/dx = -A
O%u; Uy dup 4
ayZ TV 3x * ov © (6)

This equation is similar to the one-dimensional unsteady-state heat con-
duction equation for constant heat generation. Two simple transformations
can reduce equation (6) to the form of equation (3), which can be solved
readily. The two transformations are uj = ¢ + (A/pUg)x and

up =g - (A/va)yz. Upon substitution equation (6) takes the form of
equation (3) in ¢. Because of these substitutions, some difficulties do

arise when satisfying the boundary conditions. The first transformation
is not adequate, since wujy grows with x. The second transformation




also gives difficulties when y is very large, but if one assumes that

the wake has a finite width b where ¢ - (A/va)b2 = 0 and consequently

neglects the outer region, the problem reduces to the previous solution
from equation (3) minus a parabolic term in y. The influence of the
pressure gradient 1s then felt on the outer regions of the wake depending
on the value of A (see following sketch). Behind the wire and in the
near vicinity of it,

Bp/ax >0 for the viscous wake and is usually much larger than A, and
consequently the effect then is to increase the values of uy; toward the

edges of the wake. ¥From figure 7 this observation can be for values of
x/D less than the equilibrium region of the wake or jets. As long as
dp/dx is mild, its effects can be neglected. From figure 7 and from
comparison of data pertaining to viscous wakes in the vicinity and far
away from the cylinder one can conclude that the pressure gradient must
be quite large to distinguish its effects from experimental errors.

PRT-H



General Considerations .

Since experimental results show that the dimensionless analytical
form of the mean-velocity deficiency given in equation (5) is in good
agreement with wakes in a flow field with zero or finite mean vorticity,
with low or relatively high levels of turbulence one may consider the
relation as universal. The material in the appendix extends this univer-
sality to two-dimensional and round jets. Since relation (5), as already
mentioned, does not state explicitly fthe dependence of (ul)max and bg

on x, for lack of an exact turbulent solution (ul)max and b, must be

determined experimentally so that u; or approximately AUT 1s known as
a function of x and y. Schlichting (ref. 14) gives from experiments
these functions in tabulated form for the free mixing of jets and wakes.
Naturally owing to the relatively high turbulence level, vorticlty, pres-
sure gradient, and restricted motion, the x-dependence of AlUp and by,

differs in the shear layer from those already tabulated by Schlichting.
These functions are represented in figures 24 and 25. The dependence of
bo on x/D seems to be the same for all 0.2 < 1/d < 0.5, while the de-

pendence of (up)pa, = (AUp) shows a slight trend of faster decay for
smaller values of n/d.

max

EXPERIMENTAL EQUIPMENT AND PROCEDURES
Wind Tunnel

The experimental results were obtained in the wind tunnel at Syracuse
University designed especially for this investigation. A side view of
the tunnel is shown in figure 1. On this figure, after the nozzle, the
partition 0.064 by 60 by 144 inches does not apply to this work and con-
sequently should not mislead the reader. For two-dimensionality, the
internal cross section of the chaunel has an aspect ratio of 14.5.
The channel wall sections are made of 5/4-inch by 5-foot by 10-foot

birch veneered plywood. Dry and treated maple ribs l% by 2 by 60 inches

were glued under pressure behind the plywood sheet at 12-inch intervals.
Finally, on a flat table, under pressure, a sheet of 1/4—inch by 5-foot
by 10-foot plywood was screwed on the rits. This backing sheet ensured
additional stiffening. The end ribs of each section were wider maple
ribs, predrilled for doweling and machined before they were cut in half.
This process ensured excellent matching when two sections were joined
together. The static-pressure taps and the probing stations were made

of bronze cylindrical inserts originally ground perpendicular to the axis
of the cylinder. The holes on the walls to receive these inserts were
drilled with a precision machine-shop drill resting on the surface of the
plywood itself (see fig. 2). The walls were coated with a moisture sealer
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and furniture wax. The top and bottom channel spacers were made of alu-
minum channels machined for square sides and uniform width.

Tripping Wire and Its Mechanism

The diameter of the tripping wire was chosen such that its Reynolds
number, based on the lowest velocity at the wire position in the shear
layer, was larger than the upper limit of the periodic vortex formation.
The upper limit on the diameter of the wire was governed by its blocking

area in the channel éess than l% percent). The diameter of the wire used
1
for this investigation was 0.049 inch, which gave a blocking ratio of IZ
percent. This ratio is small enough so that its effects can be neglected.
The piano wire was held through the channel with some tension by two lathe
slide rests mounted on the top and bottom of the channel. The slide rest
had two lead screws with graduated collars that provided accurate longi-
tudinal and transverse motion of the wire in the shear layer. Before any
measurement, the wire was brought in contact with the probe and then moved
back to the desired position.

Probe Traversing Mechanism

For measurements across the viscous layer and the wake, a traversing
mechanism similar to the one shown in figure 2 with an additional posi-
tive displacement dial indicator was used. The accuracy of the probe
displacement was better than 0.001 inch.

Total- and Static-~Pressure Probes

The total-pressure probes were made of small brass tubing flattened
at the sensing end to an opening of 0.005 inch. The walls of the flattened
tube were then ground to 0.007 inch. Since measurements were not per-
formed at a distance less than x/D = 5.1, where the width of the wake was
0.25 inch, the opening of the total-pressure probe was approximately one-
fiftieth the width of the wake. These proportions ensured accurate total-
pressure measurements in regions with moderately high velocity gradients.
The static-pressure probes were made with 0.024-inch-outside-diameter
tubing filed smooth at the end and with only two holes drilled along the
axis of the tripping wire. Without the tripping wire, the static pres-
sure across the channel, except in the immediate vicinity of the walls,
was very nearly equal to the value at the walls. In any case, the cal-
ibration of the probe in the channel without the tripping wire was con-
sidered, even though it was small compared with the static-pressure dis-
tribution behind the wire. 1In all cases, the stem of the probe produced

&
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a small shift in the axis of the wake. This small shift remained almost
A

1
constant throughout the experiments, and it ic discussed later.

Hot-Wire Equipment

The hot-wire equipment was of the constant current type. The set
was designed and bullt at Syracuse University and was similar to the set
mentioned in reference 16. The wires used were tungsten, 0.00015 inch
in diameter, and displayed a time constant of approximately 1.0 milli-
second. The compensation of the wire delay was good up to 15 kilocycles.
The hot wire was copper plated and mounted on long, thin jeweler broaches
to reduce the influence of the probe on the flow.

EXPERIMENTAL RESULTS

Preliminary Measurements Without Tripping Wire

Since the object of this work i1s to analyze the decay phenomenon of
a wake in a turbulent viscous layer, a fully developed viscous layer was
chosen for the initial conditions of the flow. There are two essential
reasons for this choice. The first consideration was that this type of
flow has been thoroughly investigated, and consequently its properties
are well known. The second and most Important consideration was that no
further development of the flow itself (without the tripping wire) could
be tolerated if the effects of the cylindrical disturbance alone were to
be analyzed. Tigure 3 shows the static-pressure drop along the channel
without the presence of the wire. The approximate location of the trip-
ping wire is shown. The percent width variation through the entire chan-
nel is also shown, together with the correlating evidence of the departure
from linear static-pressure drop due to width variations. Considering
the channel width, the width variations are well within expected tolerances
for wood construction. An estimate was made of the dally variations of
the widths due to changes in atmospheric conditions. The maximum value
observed was 1/2 percent. Upstream of the tripping wire, the mean-
velocity distribution and turbulence intensity showed the flow had reached
the fully developed state. Figure 4 shows the logarithmic form of the
mz2an-velocity distribution at two longitudinal stations in the neighborhood
of the wire location. Furthermore, in figure 5(a) the lower curve repre-
sents the velocity profile upstream of the tripping wire and at the end
of the decay process.

Figure 4 also shows that the viscous layer in this work falls between
that reported by Laufer (ref. 11) for his channel and the generally ac-
cepted law for the flat-plate boundary layer without pressure gradient.



12

The value of the intercept of the logarithmic law for this work and that

of Laufer are almost the same. This is not a coincidence, since in both

cases the wind-tunnel walls were made of birch plywood and their surface

was treated in the same fashion. The slopes of the curves are different,
and a survey of the literature showed that the slope depends on the level
of the pressure gradient.

The Reynolds number of the channel based on the space mean velocity
and half the channel width is 86,000. The shear stress at the wall com-
puted from the pressure drop is

T
£ . 0.0014
pUZ

This value was also verified from measurements of the mean velocity in the
sublayer obtained with the hot-wire anemometer. Measurements also showed
that the flow was two-dimensional within the accuracy of measurements.

Space Mean Velocities in Wake

Mean-velocity measurements were taken at six positions in the shear
layer, namely, at values of n/d of 0.0715, 0.20, 0.29, 0.35, 0.40, and
0.496. Longitudinal distances behind the wire for each transverse posi-
tion ranged for values of x/D shown in figure 5. As seen from the fig-
ures, two methods were used to make the measured velocities dimensionless.
The quantities shown in figure 5(a) are compared with the spacial mean
velocity for the reason that at certain locations of the wire the maxi-
mum velocity in the shear layer fell inside the wake. This method, al-
though adequate, involved space integration of the velocity profiles.

The second method, just as adequate, consisted of successive measurements
in the wake and corresponding measurements 6C to 120 diameters upstream
of the wire. The advantage of this method over the first oane was that
corresponding measurements at equal y/d's upstream and in the wake were
taken consecutively. Scatter in the deficiencies of the velocities was
somevhat reduced. The value of U, in figures 5(b) and (c) refers to
the maximum velocity upstream of the wire. As mentioned by Kovasznay
(ref. 17), the stem of the probe caused a slight shift of the center of
the wake in a direction away from the side of the stem. This shift was
consistent at all n/d values, including the center of the channel. The
shift was largest in the vicinity of the wire and decreased very fast
downstream, approximately (l/E)D at a distance 10D downstream and a
little less than 2D at about X/D = 240. The distributions of the mean
velocity in the wake shown in figure 6 were corrected for this shift. At
first this was considered the effect of circulation around the wire due
to an undisturbed flow with a velocity gradient. Calculations of that
effect showed it to be much smaller than the measured shift of the center
of the wake. The velocity deficiency in the wake is plotted in figure 6

FOT=-T
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as a 1atic tc the undisturbed velccity at the center and upstream of the
wire Ug. In this form the process can be compared witi that of a free-
stream flow,

For the choice of D/d = 0.,0127 selected, it was found that in the
regions 0.20 < n/d < 0,50, for half the channel flow, the wake completely
disappears before one side reaches the wall. This region is analyzed
here in more detail. When n/d < 0.20, as shown for instance in figure
6 for n/d = 0.0715, one side of the wake soon spreads to the wall, and
its mixing process is completely altered, since because of the presence
of the solid boundary the wake received very little energy transport from
the surroundings at that side as compared with its free side. Conse-
quently, the entire mixing process suddenly becomes much slower. From
this time on this process wag excluded from the subsequent analysis, not
because of a lack of interest, but because it introduces the additional
effects of the parameter D/d° When this decay process is plotted as in
figure 24, it starts in the same fashion as the other curves but later
remains almost parallel to the case of Townsend.

Looking at the velocity distributions in figure 5, except for the
center of the channel, the distribution of the velocity in the wake is
not symmetrical with respect to the direction of flow. However, when
velocity deficiencies are calculated from the values of the velocities
with and without the wake at the same y/d, the distribution of AUp be-
comes symmetrical for the major portion of the wake except at the edges,
where the end conditions have different turbulent properties. This fact
is shown in figure 7, and it pertains to all 0.20 < n/d < 0.50. As
mentioned in the analysis, the dimensionless form of the velocity de-
ficiencies agrees very well with the analysis based on laminar flow or
that of turbulent flow in a free stream with the assumption of a constant
shear-stress coefficient. Accepting the relation

AU e
T_T—T = exp [-0.6952 (ﬂ) ] (52)
AUD) pax bo

to be valid also for this type wake, provided the wake never spreads to
the wall, it becomes a problem to establish the dependence of (AUp) .«

and by on the coordinate x. The problem for the mean-velocity dis-
tribution is then solved semianalytically for values of 0.20 < n/d <0.50

or for n/D >15.7.
Static Pressure in Wake

Static-pressure distributions in the vicinity of the cylinder were
measured, and a typical distribution is shown in figure 8. The term Ap
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is the pressure drop caused by the viscous wake. The measurements show
that the changes in static pressure caused by the cylinder disappear to

1 percent of the dynamic pressure at a distance of 30D. Since for the
position of the wire n/d = 0.0715 the wake has not spread to the wall
at x/D = 25.5, the decay of the static-pressure peak is also represented
in figure 9. It could be noticed in figure 8 that very near the wire,

at x/D = 5.1, the static-pressure deficiency has an increase outside the
wake for a small y/d distance. This is attributed to the potential ef-
fects of the flow in the vicinity of the wire.

Turbulence Measurements

Turbulence intensities. - The root-mean-square values of the turbu-
lence in the direction of the flow were measured at various distances
downstream of the tripping wire. In order to compare the influence of
the shear-layer properties on the decay, the tripping wire was placed at
four transverse locations: n/d = 0.072, 0.20, 0.292, and 0.50. The
local turbulence levels are presented in figures 10 to 13. From these
figures it is apparent that the level of turbulence generated at the
start of the wake behind the tripping cylinder is not a function of which
portion of the shear layer was tripped. In other words, it can be said
that, for varying trip positions, the turbulence generated in the proximate
vicinity of the tripping wire is the same, but the absolute rate of decay
is different at different locations of the tripping wire. Figure 14 shows
the decay of turbulence intensity at the center of the wake for various
locations of the trip position. It is interesting to note that the turbu-
lence decay at the center of the shear layer extends very nicely into
Townsend's data taken in a free stream with low turbulence (ref. 8).

A comparison of the total decay rate should not be derived from the
slope of these curves alone, because the end conditions at the different
tripping-wire locations are not the same. For instance, at n/d = 0.072,
the decay will be completed at a level of approximately ﬁ'/U = 0.095,
while at n/d = 0.5 the decay will go down to a level of ﬁ'/U = 0.038.
The representation of total amount of turbulence to undergo decay is shown
in figure 15. This figure indicates the amount of turbulence at the
center of the wake above the initial or final state in the shear layer.
Since Townsend's initial turbulence is zero, his curve remains as in
figure 14. These curves show the same rate of decay on all four trip
positions. The only difference among them is that the origin is lower
for trip positions near the solid boundary. This is due to the fact that
the final level of turbulence 1s larger near the solid boundary. For
comparison of decay lengths, figure 16 has been drawn from the data in

o}
4 ) = 0.25 was chosen

figure 15. An arbitrary level of turbulence ZS(U
max

above the final state, and the length of process to reach that level is

plotted in figure 16 as a function of the trip position n/d. At the

-
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arbitrarily chosen level, it becomes apparent ihat it takes twice the
length at n/d = 0.072 than at the center of the channel.

Up to this point comparisons have been made of the absolute and
relative orders of magnitude of the turbulence level of the center of the
wake as it decayed downstream from the tripping cylinder. A comparison of
the proportionate levels with respect to the final state is presented in
figure 17. Here the values presented in figure 15 are divided by the
level of turbulence when the decay process is completed or by the initial
level of turbulence. '

Integral scales. - If one assumes that the power spectrum of turbu-
lence intensity in the main direction of flow can be empirically repre-
sented by (ref. 11)

Le/Uo

— (7)
212 /12
1 + n“L&/US

F(n) = %

then it is possible to show (ref. 18) that the integral scale I« can be

cbtained from the ratio of the compensated to uncompensated turbulent
energies. This expression turns out to be:

X T g-1

(8)

where M 1s the time constant of the wire, Uy is the maximum velocity

uncomp* This
relation for L, was shown by Laufer (ref. 11) to approximate fairly well

in the shear layer, and o is the ratio (u'z)comp/(u'2)

the integral scale in the fully developed turbulent shear layer as de-
fined from the integral of the correlation function

Lx=/wRde (9)
0

where Ry 1s the correlation coefficient of two turbulent signals along
the direction of flow separated by a distance x.

Power spectra measurements were not taken, and consequently the
validity of equation (7) for the power spectrum in the wake was not in-
vesgitated. However, in figure 18 the increase in LX/D with distance
downstream from the wire shows that, at the center of the wake, the
process originates at approximately LX/D = 1.0, which shows good
reliability in the method.
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.The time constant M was determined from the compensating electrical

network. The distribution of ILx across the wake at different locations

of the tripping cylinder is presented in figures 19 to 22. As mentioned
above, the levels of Ly at the center of the wake as a function of dis-

tance downstream are shown in figure 18 for various positions of the
tripping wire.

Comparison of these scales with those of Townsend performed in the
free stream is not possible, since the ultimate final state of the scales
in a free-stream wake is different from that in the fully developed tur-
bulent shear flow.

The integral scale is one measure of the turbulence structure. The
pattern of the turbulence fluctuation u' was photographed from the
oscilloscope. Figure 23 demonstrates the difference in structure between
a point at the center of the wake and one just outside the wake. The
time scales on the pictures are the same. The pattern just outside the
wake was taken in order to see whether intermittency of turbulence efflux
at the wake boundaries could be noticed. Patches of high frequency can
be observed in the lower trace. The measured values of the integral
scales also show the abundance of high frequency (low scales) at the
center of the wake when compared with that outside the wake.

Decay Phenomenon of Velocity Deficiency

If equation (5a) is considered a representative dimensionless
velocity-deficiency distribution in the wakes in turbulent shear flows
for 0.20 < n/d < 0.50 and n/D > 15.7, then establishing the dependence
of (AUp)ysx &nd by as a function of x establishes the mean-velocity

distribution in the wake. The variations of (AUT)maX/U for various

S

rositions n/d are shown in figure 24 (U is the undisturbed velocity

S
at the center of the wire, that is, at n/d). The velocity deficiency
does not decay with a simple power law as in the case of the free strean,
as shown by Townsend's measurements on the same figure. One could even
argue about the linearity of Townsend's results and make his experimental
points fall on a curve with the same origin and belonging to the family
of curves shown. Townsend (ref. 8) has already shown in his analysis of
turbulent wakes in the free stream that, if similarity exists in the
mean-velocity distribution and the turbulent shear stress, and also if
the similarity law of the mean velocity is assumed to be a Gaussian error
function, then from the momentum and energy equaticn the decay of the
maximum velocity deficiency is somewhat different from the simple power
law of -1/2. His expression was in the form

¥8T-4
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max L

X X
Y B(’ﬁ)

For this case B was determined to be 0.43. Actually the process
of decay here is much faster, since for large values of x/D the curves
in figure 24 take an average slope of about —4/5. In this investigation
it is expected that the decay process should be faster than that of a
wake in a free stream. This 1s easily explained by observing the terms
in the equation for the rate of turbulent energy interchange:

Iyl ge ).y .3 ). (7 W, —— U
> (p <3tV Sy a ) + E(Sz u'q'é + Sy vig )+-(u St U Sy

1l/z

L
= - .5 <§£ ptuv +§5f plvl> + v(u.VZu' + V|V2v'> (lO)

In the vicinity of the wire, where gradients in the x- and y-directions
are large, the entire equation (10) applies. In the region far downstream
of the wire the terms involving gradients in x may be neglected compared
with those in y and equation (10) becomes

% (U % E’—B>+ %(% v'q'2>+ (W %) = - %(Fay p'v'>+<u'V2u’ + V'VEV')

(10a)

The energy transport inside the wake due to the order of magnitude of

the terms above is helped considerably by the gradients outside the wake
as well. The first quantity in parentheses in equations (10) and (10a)
indicates the rate of energy convected by the mean flow. The second
varentheses represents the diffusion of turbulent energy by the turbulent
motion. The third is the production of turbulent energy, the fourth is
the work due to the pressure fluctuation, and the last includes the
viscous dissipation and viscous work. It is interesting to note that the
end of the wake on the wall side of the shear layer has a much greater in-
fluence because of its larger gradients than the other side of the wake.
This is the reason the conditions at the two ends of the wake as shown

in figure 7 are not identical. In the case of n/D < 15.7, when the edge
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of the wake reaches the wall, the energy interchange with the outside
is limited to the outer side of the wake, and consequently the decay
process is slower.

Spread of Wake

The spread of the wake represented in figure 25 does not seem to be
a function of the position of the tripping wire as the maximum velocity
deficiency does. The spread of by is again faster than that obtained
by Reichardt (ref. 5) and Schlichting (ref. 2) for a free-stream two-
dimensional wake. Since the momentum in the wake is related to the drag
on the cylinder, by integrating over a control surface enclosing the
cylinder, the drag and consequently the drag coefficient were calculated
and entered in the dimensionless representation of the spread by in
figure 25. The spread of the wake can then be represented for all n/d
by a simple power law with an exponent 0.59.

Scale of Decay for Mean Velocity

In order to establish a relative order of magnitude of the length
x/D, the wake must decay at various locations n/d of the cylinder; an
arbitrary decay of the wake corresponding to (AUp)pa./Us = 0.03 was

chosen for comparison. If in figure 24 a line is drawn through the value
of the ordinate 0.03 parallel to the abscissa, the decay lengths L/D
are obtained and can be plotted as in figure 26. This figure in linear
coordinates shows the influence of n/d on the decay phenomenon better
than the logarithmic representation in figure 24. The free-stream decay
of the wake to the 3-percent value of the undisturbed velocity ahead of
the cylinder would have taken approximately 950D, as shown in figure 24.
This indicated that the decay process in the shear layer is at least
three times as fast as the one in the free stream. This shortening of
the decay length is due to:

(1) The high levels of turbulence at the origin of the wake
(2) The spread of the wake into a turbulent and relatively high
vorticity field where turbulent energy is transported in the

absence of the wake

(3) The presence of the favorable pressure gradient in the channel
which accelerates the motion in the wake

$8T-H
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CONCLUSIONS

The experimental measurements in the wake of a two-dimensional cyl-
inder in a fully developed turbulent viscous layer showed the following
points of interest:

1. The dimensionless mean-velocity deficiency in the wake displays
similarities with the laminar or turbulent wake in a free stream. The
asymmetry of the conditions of the flow outside the wake makes itself
felt at the edges of the wake.

2. The effect of the favorable pressure drop in the wind tunnel is
to help reduce the velocity deficiency throughout the wake. The pressure
drop was not large enough to affect the similarity.

3. For the ratio of cylinder diameter to channel width in this ex-
periment, when the cylinder is placed at a distance from the wall smaller
than n/d = 0.2, the wake spreads to the wall before being completely
mixed (n, distence of tripping wire from channel wall; d, local channel
width). The process of mixing becomes much slower after one edge of the
wake has spread to the wall.

4. The static-pressure gradients due to the cylinder and in the
vicinity of the cylinder can be completely neglected after 30 cylinder
diameters.

S. When the cylinder is at the center of the channel, the longitu-
dinal decay of the velocity deficiency requires a length three times as
short as the decay in the free stream. When the cylinder is at a dis-
tance from the wall n/d = 0.2, the decay length is reduced by a factor
of four when compared with the free-mixing problem with a low-turbulence
free stream.

For the region in the viscous layer where the cylinder was positioned
0.2 < n/d < 0.5, the mean-velocity gradients and the turbulence level in
the undistributed flow do not vary considerably. It would be of interest
to choose a smaller ratio of wire diameter to channel width D/d and
approach the wall even further, making sure the wake decays to a reason-
ably low value before it spreads to the wall. Also it would be of inter-
est to study the decay process when one edge of the wake spreads to the
wall,

Syracuse University,
Syracuse, N. Y., January 7, 1959
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APPENDIX - DISCUSSION ON WAKES AND JETS IN UNIFORM FREE STREAMS

The problem of free mixing of two- or three-dimensional jets and
wakes shows remarkable similarities, far encugh downstream, in the dis-
tribution of the mean velocity. This fact was mentioned by Reichardt
(ref. 13) and led him to believe that all free-mixing processes of ve-
locity discontinuities reach a condition far enough downstream where the
process could be described by the one-dimensional heat equation with
nonconstant coefficients. This work is referred to in the literature
today as the inductive theory of turbulence.

This amazing similarity in the free-mixing processes is shown here
in some detail for the reason that it not only applies to free-stream
conditions that are uniform but to free streams with moderately high
vorticity and turbulence as well, as in the case of this investigation.

The dynamic equations for the mean motion of the flow far enough
downstream of a cylinder reads as equation (1) or (3). U, is the free-
stream velocity, up and v; are the components of the velocity defi-
ciency. The solution of these equations is given in equation (4) and in
a more general form in equation (5). Since the experimental data for the
laminar as well as the turbulent wake agree well with equation (2) and
consequently equation (5),

2
up = Cx—l/2 exp [— Ef%;—)'—] (2)
g oot (s)

it becomes reasonable to assume that the differential equation for the
laminar case (eq. (3)) is also the equation for the turbulent wake ex-
cept for the coefficients. Goertler (ref. 15) using Prandtl's hypothesis
for constant shear coefficient factored the turbulent shear stress with
the laminar one and changed the kinematic viscosity into a "virtual
kinematic viscosity” e. The equation pertaining to the turbulent wake
is then

> 2
5 uy . o0“uy
® Ox dy2

This implies that the turbulent shear stress is proportional to the
laminar shear. The proportionality factor is taken as a constant. Re-
gardless of the coefficients, the dimensionless solution given in equa-
tion (5) always satisfies. For a = 0.6932

¥81-d
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Depending on the type of free mixing, bg and (ul)max or (AUT)max

will assume different dependences on x. However, the experimental
measurements in figures 27 and 7 show that the dimensionless form in &
applies to all. The experimental data for two-dimensional Jets and wakes
and round jets are shown in figure 27 together with the solution of
equation (5). Miss Swain (ref. 19) has analyzed the problem of the three-
dimensional wake and predicted the same type of solution found by
Schlichting for the two-dimensional turbulent wake based on Prandtl's
mixing-length theory. Figure 27 shows first that the experimental data
pertaining to the different types of mixing correlate remarkably well
within the experimental scatter of any one set of measurements. Equa-
tion (5a) is a good representative for all the measurements. Figure 28
shows the same experimental points plotted with various analytical solu-
tions derived for each individual case. It can be seen that the analyt-
ical solutions show a much wider scatter among themselves than the ex-
perimental points pertaining to the different physical configurations.

The various theoretical curves shown in figure 28 should be recog-
nized as follows: Curve 1 is from Schlichting (refs. 2 and 14) assuming
constant mixing length across the two-dimensional turbulent free wake
according to the equation

v, u (yw>3/ 2 (yw>3
= =1 - 0.586{— + 0.086\;7—
C&J'I‘)n::a.x (ul)max oo o

The difficulty with this solution is that it gives a finite width for

the wake as the solution runs away for large values of y... Also, in the

center there is a discontinuity in the curvature of the velocity profile.

Curve 2 is equation (2) changed to the form of equation (5) following
Goertler assuming a constant shear-stress coefficient in the two-
dimensional turbulent wake.

Curve 3 is for the two-dimensional jet of Tollmien (ref. 4). His
solution is based on Prandtl's mixing-length hypothesis. The form of the
solution is not reported, as it does not appear in a clcsed explicit
form.

Curve 4 is again for the two-dimensional turbulent jet of Goertler
(ref. 15), who assumed a constant shear-stress coefficient. In the co-
ordinates of figure 28, his solution transforms into
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U u 0.885 ¥
r . L -1 - tann? <———————E)
(UT)max (ul)max Po

Curve 5 is Tollmien's solution for the round jet with the same
mixing-length assumption he adopted for the two-dimensional jet in his
analysis for curve 3. Again the solution is not reported because it does
not appear in a closed explicit form.

Curve 6 corresponds to the round jet assuming Goertler's constant
virtual kinematic viscosity and a constant jet strength during the
expansion

Up u 1 _

Unlmax (W )max [1 ] 0_414(%2]2

bo

Miss Swain (ref. 19) has shown that, for a wake behind a body of
revolution, the solution reduces to that given by Schlichting for the
two-dimensional wake. Corrsin (ref. 7) has shown that using Taylor's
assumption of constant transport of vorticity, at least for the round
jet, does not give a better fitting solution than those obtained by
Prandtl's momentum transfer or constant-shear-coefficient hypothesis.
Just from inspection of figures 27 and 28 it becomes apparent that the

exponential form of solution (curve 2) seems to represent the experimental

values better than the others. The mixing problem of velocity discon-
tinuities created by Jjets and wakes can be considered with good approxi-
mation to be as given by equation (5) where (AUq)p., = £(x) and by = @(x)

must be determined experimentally.

In general one may say that the general form of mixing solution
2

<[]

u; = f(x

with u /f(x) =& and y/e(x) = ¢ satisfies the differential equations
E" 4 2aE'C + 2af = O
In the case of the circular jet and two-dimensional wake f(x) ~ L/p(x).
The functions f(x) and ¢(x) have been determined experimentally

in this work for the decay process of wakes in turbulent shear flow.
These functions are represented in figures 24 and 25.
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Figure 27. - Correlated experimental velocity distributions of
fully developed wakes and jets.
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